Original Contribution OXIDATIVE STRESS IN BRAIN DURING EXPERIMENTAL BACTERIAL MENINGITIS: DIFFERENTIAL EFFECTS OF a-PHENYL-TERT-BUTYL NITRONE AND N-ACETYLCYSTEINE TREATMENT

نویسندگان

  • STEPHAN CHRISTEN
  • MANUELA SCHAPER
  • JENS LYKKESFELDT
  • CORINNE SIEGENTHALER
  • YOENG-DELPHINE BIFRARE
  • STAŠA BANIČ
  • STEPHEN L. LEIB
  • MARTIN G. TÄUBER
چکیده

Antioxidant treatment has previously been shown to be neuroprotective in experimental bacterial meningitis. To obtain quantitative evidence for oxidative stress in this disease, we measured the major brain antioxidants ascorbate and reduced glutathione, and the lipid peroxidation endproduct malondialdehyde in the cortex of infant rats infected with Streptococcus pneumoniae. Cortical levels of the two antioxidants were markedly decreased 22 h after infection, when animals were severely ill. Total pyridine nucleotide levels in the cortex were unaltered, suggesting that the loss of the two antioxidants was not due to cell necrosis. Bacterial meningitis was accompanied by a moderate, significant increase in cortical malondialdehyde. While treatment with either of the antioxidants a-phenyl-tert-butyl nitrone or N-acetylcysteine significantly inhibited this increase, only the former attenuated the loss of endogenous antioxidants. Cerebrospinal fluid bacterial titer, nitrite and nitrate levels, and myeloperoxidase activity at 18 h after infection were unaffected by antioxidant treatment, suggesting that they acted by mechanisms other than modulation of inflammation. The results demonstrate that bacterial meningitis is accompanied by oxidative stress in the brain parenchyma. Furthermore, increased cortical lipid peroxidation does not appear to be the result of parenchymal oxidative stress, because it was prevented by NAC, which had no effect on the loss of brain antioxidants. © 2001 Elsevier Science Inc. Keywords—Inflammation, Oxidative stress, Lipid peroxidation, Neuronal injury, Ascorbate, Glutathione, a-Phenyltert-butyl nitrone, N-Acetylcysteine, Free radicals

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preliminary Study of the Therapeutic Effect of a Nitrone-Based Antioxidant Drug (HPN-07) on Acute Acoustic Trauma

Prof. Chul-Hee Choi, PhD, Department of Audiology and Speech-Language Pathology and Research Institute of Biomimetic Sensory Control, College of Medical Sciences, Catholic University of Daegu, 5 Gumgokri, Hayangup, Kyungsansi, Kyungsangbukdo, Korea e-mail: [email protected] tel.: +82 53 850 3185 Background & Objectives: Acute acoustic trauma (AAT) results in oxidative stress exceeding the capacity...

متن کامل

Antioxidant therapies in COPD

Oxidative stress is an important feature in the pathogenesis of COPD. Targeting oxidative stress with antioxidants or boosting the endogenous levels of antioxidants is likely to be beneficial in the treatment of COPD. Antioxidant agents such as thiol molecules (glutathione and mucolytic drugs, such as N-acetyl-L-cysteine and N-acystelyn), dietary polyphenols (curcumin, resveratrol, green tea, c...

متن کامل

Effects of Antioxidant Treatment on Blast-Induced Brain Injury

Blast-induced traumatic brain injury has dramatically increased in combat troops in today's military operations. We previously reported that antioxidant treatment can provide protection to the peripheral auditory end organ, the cochlea. In the present study, we examined biomarker expression in the brains of rats at different time points (3 hours to 21 days) after three successive 14 psi blast o...

متن کامل

Mechanisms and Treatment of Blast Induced Hearing Loss

The main objective of this study is to provide an overview of the basic mechanisms of blast induced hearing loss and review pharmacological treatments or interventions that can reduce or inhibit blast induced hearing loss. The mechanisms of blast induced hearing loss have been studied in experimental animal models mimicking features of damage or injury seen in human. Blast induced hearing loss ...

متن کامل

Effects of α-Phenyl-N-tert-Butyl Nitrone (PBN) on Brain Cell Membrane Function and Energy Metabolism during Transient Global Cerebral Hypoxia-Ischemia and Reoxygenation-Reperfusion in Newborn Piglets

We sought to know whether a free radical spin trap agent, alpha-phenyl-N-tert-butyl nitrone (PBN) influences brain cell membrane function and energy metabolism during and after transient global hypoxia-ischemia (HI) in the newborn piglets. Cerebral HI was induced by temporary complete occlusion of bilateral common carotid arteries and simultaneous breathing with 8% oxygen for 30 min, followed b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001